
 

TeesRep: Teesside University's Research Repository http://tees.openrepository.com/tees/ 
 

 

 

 

 

 

 

 

This full text version, available on TeesRep, is the post-print (final version prior to publication) of: 

 

Dunne, S. E. and Conroy, S. (2009) 'A practical single refinement method for B', First 

international conference, ABZ, London, UK, September 16-18, in Börger, E. et al. 

(eds) Abstract state machines, B and Z, Lecture notes in computer science. 

Heidelberg: Springer Berlin, pp.195-208.  

 

For details regarding the final published version please click on the following DOI link: 

http://dx.doi.org/10.1007/978-3-540-87603-8 

 

When citing this source, please use the final published version as above.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This document was downloaded from http://tees.openrepository.com/tees/handle/10149/93947 

Please do not use this version for citation purposes. 

 

All items in TeesRep are protected by copyright, with all rights reserved, unless otherwise indicated. 

 

http://dx.doi.org/10.1007/978-3-540-87603-8
http://tees.openrepository.com/tees/handle/10149/93947


A Practical Single Refinement Method for B

Steve Dunne and Stacey Conroy

School of Computing, University of Teesside
Middlesbrough, TS1 3BA, UK

s.e.dunne@tees.ac.uk

Abstract. We propose a single refinement method for B, inspired di-
rectly by Gardiner and Morgan’s longstanding single complete rule for
data refinement, and rendered practical by application of the current
first author’s recent first-order characterisation of refinement between
monotonic computations.

1 Introduction

In this paper we describe a method for verifying arbitrary refinements between B
machines, in the absence of unbounded nondeterminism, in a single step rather
than having to find an intermediate backward refinement of the “abstract” ma-
chine which is itself then forward-refined by the “concrete” machine. The idea
of a single complete refinement rule is by no means new: such a rule for data
refinement in a predicate-transformer setting was described as long ago as 1993
by Gardiner and Morgan [11], and it is indeed fundamentally their idea which we
exploit in this paper. Gardiner and Morgan themsleves appear to have regarded
their rule as of theoretical interest only; it seems they didn’t seek to exploit
it in practice. We will show that a slightly extended version of B provides a
suitable setting for practical exploitation of Gardiner and Morgan’s rule. Like
Gardiner and Morgan we interpret a computation as a weakest-precondition (wp)
predicate transformer from sets of final states to sets of starting states [6], and
call it monotonic if its corresponding wp predicate-transformer is monotonic. A
monotonic computation can exhibit both demonic and angelic nondeterminism.
Conjunctivity and disjunctivity are special cases of monotonicity: a conjunctive
computation can exhibit only demonic nondeterminism, while a disjunctive com-
putation can exhibit only angelic nondeterminism [7].

Our contribution here is the formulation of a pair of simple first-order proof
obligations for verifying refinements between monotonic computations, which
renders such verifications amenable to mechanisation in a similar way to that
which B already uses for refinements between conjunctive computations [1].

The remainder of the paper is structured as follows: in Section 2 we describe
Gardiner and Morgan’s single complete rule for data refinement and in Section
3 we take some mathematical insight from [2] to explain why an arbitrary data
refinement can always be “factored” into a succession of backward and forward
refinements. In Section 4 we summarise the relevant properties of extended sub-
stitutions which we subsequently exploit to develop our new single refinement



method for B in Section 5; in Section 6 we illustrate the use of our new method
on an example refinement scenario; in Section 7 we compare our single complete
method for B with that formulated for Z in [4] before finally relating it to other
relevant recent work and drawing some conclusions in Section 8.

2 Gardiner and Morgan’s Rule for Data Refinement

Gardiner and Morgan [11] significantly advanced our understanding of data re-
finement when they showed that forward and backward refinement could be
subsumed into a single complete refinement rule in which the traditional re-
trieve relation between abstract and concrete states is superseded by a mono-
tonic predicate transformer of sets of abstract states to sets of concrete states.
Such a predicate transformer can be regarded as characterising in terms of its
wp semantics a heterogeneous monotonic computation from concrete states to
abstract states called a representation operation. Our intuition is that in a par-
ticular refinement context such an operation “computes” for any given concrete
state an abstract state which that concrete state can be said to “represent”.

2.1 Cosimulation

For a pair of abstract data types Adt and Cdt with respective state spaces Astate
and Cstate, and respective initialisations ainit and cinit, finalisations afin and cfin,
and repertoires of operations aopi and copi for i ∈ I , then a monotonic repre-
sentation operation rep from Cstate to Astate is a cosimulation if the following
hold:

ainit v cinit ; rep

rep ; aopi v copi ; rep for each i ∈ I

rep ; afin v cfin

The significance of the existence of such a cosimulation is that it establishes that
Cdt refines Adt . In the special case where rep is disjunctive then Cdt is a forward
refinement of Adt , while if rep is conjunctive then Cdt is a backward refinement
of Adt . There is, however, an important qualification on the completeness of
Gardiner and Morgan’s single rule, namely that the abstract operations and the
representation operation itself must only be at most boundedly nondeterministic.

In prominent formal modelling methods such as B [1], Z [16] and VDM
[12] finalisations are invariably just projections onto the global space, so the
finalisation condition is trivially met providing that rep is total (i.e. everywhere
feasible).

3 Factorising an Arbitrary Refinement

For any relation R ∈ X ↔ Y Back and von Wright [2] define two particular
computations from X to Y . They call these respectively the demonic and angelic

2



relational updates on R, and denote them respectively by [R] and {R}. The
former is characterised by a conjunctive wp predicate transformer, the latter by
a disjunctive one. If x and y range respectively over X and Y , R is expressed
as predicate R(x , y) and Q(y) is any postcondition predicate, we have

wp([R], Q) =df ∀ y . R ⇒ Q

wp({R}, Q) =df ∃ y . R ∧ Q

In [2] it is shown that for any monotonic computation comp from X to Y an
intermediate state space Z can be constructed with relations R1 ∈ X ↔ Z and
R2 ∈ Z ↔ Y such that comp = {R1} ; [R2] . This explains why an arbitrary
refinement of a data type Adt by another Cdt can always be factored into a
backward refinement of Adt by some intermediate data type Bdt and then a
forward refinement of that by Cdt . In these refinements the relations R1 and
R2 play the familiar role of retrieve relations between the concrete and abstract
states.

3.1 Traditional Representation of Refinements in B

Currently in both classical and Event-B refinement the retrieve relation con-
cerned is of course subsumed along with the concrete machine’s state invariant
into what is known as the “gluing” invariant. The concrete machine is therefore
not explicitly exhibited in the refinement component which is actually presented,
although it is always inferrable from the latter. It is important to appreciate that
this is a merely the way the original architects of the B method chose to represent
refinements, rather than being fundamental to the concept of refinement itself
in B. Other possibilities for representing refinements in B are quite imaginable.
For example, in [3] a new RETRENCHMENT construct is proposed which refers
to a pair of existing machines to express the existence of a retrenchment relation
between them. In the same way B might have had a REFINEMENT construct
which refers to a pair of existing machines and provides an appropriate retrieve
relation between them.

4 Extended Substitutions

In [10] B’s generalised substitution language is extended by the introduction
of angelic choice, and a theory of so-called extended substitutions is developed.
In particular, the bounded angelic and demonic choice operators are denoted
respectively by “t” and “u”. Like ordinary generalised substitutions [1, 8], ex-
tended substitutions can naturally express heterogeneous computations (those
whose starting and final state spaces are distinct). This merely requires that their
passive (read frame) variables are all associated with the starting state space,
while their active (write frame) variables are all associated with the final state
space1. The significance here is that extended substitutions provide a means of
1 In the theory of generalised substitutions in [8] and of extended substitutions in [10]

the active frame of a substitution is simply called its frame.

3



expressing a heterogeneous monotonic representation operation in B. We note
that the read frame of an operation includes its input parameters, while its write
frame includes its output parameters.

4.1 Relational characterisation of an extended substitution

Extended substitutions have several important associated characteristic predi-
cates. For our purpose here the most significant of these is the so-called before-
after power co-predicate2 cod(S ), defined for an extended substitution S with
frame s as follows:

cod(S ) =df [S ]s ∈ u

Here the atomic variable u is assumed fresh, and ranges over sets of final states,
where each such final state is denoted by a tuple whose components correspond
to the individual variables of the final state in lexical order of their names, while
the frame variable s is interpreted here as a similar tuple whose whose compo-
nents collectively denote a starting state of the computation characterised by S .
Thus cod(S ) is a relational predicate whose free variables are those comprising
s together with the fresh variable u.

For example, if S is x , y := 7, x + 1 u x := 8 then since frame(S ) = x , y the
s in the definition of cod(S ) above is interpreted here as the tuple (x , y), so we
have that

cod(S ) = [x , y := 7, x + 1 u x := 8](x , y) ∈ u

= [x , y := 7, x + 1](x , y) ∈ u ∧ [x := 8](x , y) ∈ u

= (7, x + 1) ∈ u ∧ (8, y) ∈ u

Thus here cod(S ) relates each starting state (x , y) to every corresponding set u
of final states which includes states (7, x +1) and (8, y), and inter alia, therefore,
to the minimal set of final states {(7, x + 1), (8, y)}. Notice that the variable u
in cod(S ) is just a placeholder for sets of possible final states of the monotonic
computation characterised by S , in the same way that the primed frame variables
in the before-after predicate prd(T ) of an ordinary generalised substitution T
in [8] are collectively just a placeholder for individual possible final states of the
conjunctive computation characterised by T .

4.2 Refinement of extended substitutions

An ordinary generalised substitution is characterised by its frame, its termina-
tion predicate trm and its before-after predicate prd [8], whereas in contrast an
extended substitution is characterised by its frame and its cod alone without
2 It is called a power co-predicate to distinguish it from its dual the power predicate

pod(S) =df ¬ [S ]s /∈ u also defined in [10], which with the frame s provides an
alternative full characterisation of S .

4



need of its trm. Indeed [10, Prop 5.6] establishes the following important first-
order characterisation of refinement between extended substitutions S and T
with the same frame, where v denotes the list of all free variables of cod(S ) and
cod(T ) –including of course the special atomic variable u used in the definition
of cod:

S v T ⇔ ∀ v . cod(S )⇒ cod(T )

5 A Complete Single Refinement Rule for B

We exploit the above formulation of extended-substitution refinement to re-
express Gardiner and Morgan’s single complete refinement rule described in
Section 2 by replacing its explicit occurrences of the refinement symbol v . This
yields the following complete first-order characterisation of the refinement of
one B machine Amach, with initialisation ainit and operations aopi for i ∈ I ,
by another Cmach with initialisation cinit and corresponding operations copi

for i ∈ I . Such a refinement is verified if a representation operation rep can be
specified from Cmach’s states to Amach’s states, expressed as a total boundedly
nondeterministic extended substitution, such that

∀ v . cod(ainit) ⇒ cod(cinit ; rep)

∀ v . cod(rep ; aopi) ⇒ cod(copi ; rep) for each i ∈ I

where v again signifies the list of all free variables of the cods concerned here.

5.1 Nature of a first-order characterisation

The above pair of obligations represent a first-order characterisation of refine-
ment since they can be re-written to eliminate first all the references to cod by
applying its definition and then the resulting substitutions by applying them as
wp predicate transformers. This will result in a finite collection of proof obliga-
tions expressed only in first-order logic with set-membership and equality, and
therefore eminently amenable to manual or machine-assisted proof.

The fact that an extended substitution is characterised by its frame and cod
alone without need of trm conveniently serves to limit the number of proof obli-
gations so generated. This is in contrast to traditional classical B refinement [1]
which generates two proof obligations for each operation, one essentially con-
cerned with before-after effects and one concerned with termination. In the fol-
lowing section we will illustrate our refinement method with an example.

6 Schrődinger’s Cat Revisited

The trio of machines below is almost the same as the Schrődinger’s Cat example
given in [9] as one of several examples of “intuitively obvious” co-refinements

5



which nevertheless can only be proved in one direction but not the other by B’s
traditional forward refinement method.

Our ACat and BCat machines each model from an external perspective the
scenario of putting a cat into an opaque box, and then later taking it out and
thereupon discovering whether it has survived or died during its confinement,
its fate having been dealt nondeterministically.

6.1 The abstract and concrete specifications

First we introduce our GivenSets machine declaring relevant types:

MACHINE GivenSets

SETS
BOXSTATE = {empty , full}
CATSTATE = {alive, dead}

END

In the Acat machine below the cat’s fate is actually sealed when it is placed in
the box, because it is then that the state variable cat is nondeterministically
assigned its relevant value alive or dead which will subsequently be reported
when that cat is taken out of the box:

MACHINE Acat

SEES GivenSets

VARIABLES acat , abox

INVARIANT abox ∈ BOXSTATE ∧ acat ∈ CATSTATE

INITIALISATION abox := empty || acat :∈ CATSTATE

OPERATIONS

put =̂ PRE abox = empty
THEN abox := full || acat :∈ CATSTATE
END ;

rr ←− take =̂
PRE abox = full
THEN abox , rr := empty , acat
END

END

On the other hand, in the BCat machine below the cat’s fate isn’t sealed until
it is taken out of the box, because only then is the report variable rr nondeter-
ministically assigned its value alive or dead :

MACHINE Bcat

SEES GivenSets

6



VARIABLES bbox

INVARIANT bbox ∈ BOXSTATE

INITIALISATION bbox := empty

OPERATIONS

put =̂ PRE bbox = empty
THEN bbox := full
END ;

rr ←− take =̂
PRE bbox = full
THEN box := empty || rr :∈ CATSTATE
END

END

Clearly an external observer must remain entirely oblivious of this fine distinction
between these machines’ respective internal workings concerning just when the
cat’s fate is actually determined. From his perspective the machines behave
identically. With a complete refinement method we ought to be able to prove
both that Acat v Bcat and Bcat v Acat . With B’s standard refinement method
we can only prove that Bcat v Acat , but not that Acat v Bcat . In [9] we
developed a counterpart backward refinement, but even that doesn’t allow us
to prove directly here that Acat v Bcat , since this isn’t purely a backward
refinement either3.

6.2 Proof of Refinement

We will now prove directly that Acat v Bcat using our new single complete
refinement method. For this we deem Acat as the abstract datatype while Bcat
is the concrete one.

Representation operation First, we specify an appropriate representation
operation:

rep =̂ IF bbox = empty
THEN abox , acat := empty , alive t abox , acat := empty , dead
ELSE abox , acat := full , alive u abox , acat := full , dead
END

We note that rep employs both demonic choice “u” and angelic choice “t” so
it is non-trivially monotonic.
3 The original Acat in [9] is subtly different from the one here: in addition to assigning

values to abox and rr its version of take also nondeterministically assigns either
alive or dead to acat . This has no effect on the externally observable behaviour of
the machine, but turns Acat v Bcat into a purely backward refinement which can
be proved directly by [9]’s backward refinement method.

7



Initialisation Labelling the abstract (Acat) initialisation as ainit and the con-
crete (Bcat) one as binit, we have to prove that

cod(ainit)⇒ cod(binit ; rep)

Proof:
cod(ainit)
= { defn of cod }

[ainit] (abox , acat) ∈ u
= { body of ainit }

[abox := empty || acat :∈ CATSTATE ] (abox , acat) ∈ u
= { rewrite || }

[abox , acat := empty , alive u abox , acat := empty , dead ] (abox , acat) ∈ u
= { apply substitution }

(empty , alive) ∈ u ∧ (empty , dead) ∈ u (1)

whereas
cod(binit ; rep)
= { defn of cod }

[binit ; rep] (abox , acat) ∈ u
= { defn of ; }

[binit] [rep] (abox , acat) ∈ u
= { body of rep }

[binit] [IF ... END](abox , acat) ∈ u
= { appln of IF ... END }

[binit] ((bbox = empty ⇒ (empty , alive) ∈ u ∨ (empty , dead) ∈ u)
∧ (bbox = full ⇒ (full , alive) ∈ u ∧ (full , dead) ∈ u))

= { body of binit }
[bbox := empty ] ((bbox = empty ⇒ (empty , alive) ∈ u ∨ (empty , dead) ∈ u)

∧ (bbox = full ⇒ (full , alive) ∈ u ∧ (full , dead) ∈ u))
= { apply substitution, logic }

(empty , alive) ∈ u ∨ (empty , dead) ∈ u (2)

whence it can be seen that (1) ⇒ (2)
�

The put Operation To differentiate the abstract and concrete versions of put
we label the former as aput and the latter as bput. We have to prove that

cod(rep ; aput)⇒ cod(bput ; rep)

Proof:

8



cod(rep ; aput)
= { defn of cod }

[rep ; aput] (abox , acat) ∈ u
= { defn of ; }

[rep] [aput] (abox , acat) ∈ u
= { body of aput }

[rep] [abox = empty | (abox := full || acat :∈ CATSTATE )](abox , acat) ∈ u
= { defn of | }

[rep] (abox = empty ∧ [abox := full || acat :∈ CATSTATE ] (abox , acat) ∈ u
= { rewrite || }

[rep] (abox = empty ∧
[abox , acat := full , alive u abox , acat := full , dead ] (abox , acat) ∈ u

= { apply substitution, logic }
[rep] (abox = empty ∧ (full , alive) ∈ u ∧ (full , dead) ∈ u)
= { body of rep }

[IF ... END](abox = empty ∧ (full , alive) ∈ u ∧ (full , dead) ∈ u)
= { apply IF ... END, logic }

bbox = empty ∧ (full , alive) ∈ u ∧ (full , dead) ∈ u (3)

whereas
cod(bput ; rep)
= { defn of cod }

[bput ; rep] (abox , acat) ∈ u
= { defn of ; }

[bput] [rep] (abox , acat) ∈ u
= { body of rep }

[bput] [IF ... END](abox , acat) ∈ u
= { apply IF ... END }

[bput] (bbox = empty ⇒ (empty , alive) ∈ u ∨ (empty , dead) ∈ u) ∧
(bbox = full ⇒ (full , alive) ∈ u ∧ (full , dead) ∈ u)

= { body of bput }
[bbox = empty | bbox := full ]

(bbox = empty ⇒ (empty , alive) ∈ u ∨ (empty , dead) ∈ u) ∧
(bbox = full ⇒ (full , alive) ∈ u ∧ (full , dead) ∈ u)

= { apply substitution, logic }
bbox = empty ∧ (full , alive) ∈ u ∧ (full , dead) ∈ u (4)

whence it can be seen that (3) = (4)
�

9



The take Operation To differentiate the abstract and concrete versions of take
we label the former as atake and the latter as btake. Since they share the output
variable rr this appears in both their frames. We have to prove that

cod(rep ; atake)⇒ cod(btake ; rep)

We note that the relevant frame tuple u here is (abox , acat , rr).

Proof:
cod(rep ; atake)
= { defn of cod }

[rep ; atake] (abox , acat , rr) ∈ u
= { defn of ; }

[rep] [atake] (abox , acat , rr) ∈ u
= { body of atake }

[rep] [abox = full | abox , rr := empty , acat ] (abox , acat , rr) ∈ u
= { apply substitution }

[rep] (abox = full ∧ (empty , acat , acat) ∈ u)
= { body of rep }

[IF ... END](abox = full ∧ (empty , acat , acat) ∈ u)
= { apply IF ... END, logic }

bbox = full ∧ (empty , alive, alive) ∈ u ∧ (empty , dead , dead) ∈ u (5)

whereas
cod(btake ; rep)
= { defn of cod }

[btake ; rep] (abox , acat , rr) ∈ u
= { defn of ; }

[btake] [rep] (abox , acat , rr) ∈ u
= { body of rep }

[btake] [IF ... END](abox , acat , rr) ∈ u
= { apply IF ... END }

[btake] ((bbox = empty ⇒ (empty , alive, rr) ∈ u ∨ (empty , dead , rr) ∈ u) ∧
(bbox = full ⇒ (full , alive, rr) ∈ u ∧ (full , dead , rr) ∈ u))

= { body of btake }
[bbox = full | bbox := empty || rr :∈ CATSTATE ]

((bbox = empty ⇒ (empty , alive, rr) ∈ u ∨ (empty , dead , rr) ∈ u) ∧
(bbox = full ⇒ (full , alive, rr) ∈ u ∧ (full , dead , rr) ∈ u))

= { rewrite || }
[bbox = full | bbox , rr := empty , alive u bbox , rr := empty , dead ]

((bbox = empty ⇒ (empty , alive, rr) ∈ u ∨ (empty , dead , rr) ∈ u) ∧
(bbox = full ⇒ (full , alive, rr) ∈ u ∧ (full , dead , rr) ∈ u))

= { apply substitution, logic }

10



bbox = full ∧ ((empty , alive, alive) ∈ u ∨ (empty , dead , alive) ∈ u) ∧
((empty , alive, dead) ∈ u ∨ (empty , dead , dead) ∈ u) (6)

whence it can be seen that (5) ⇒ (6)
�

7 Comparison with Single Complete Refinement in Z

In [4] Derrick gives a single complete refinement rule for Z, which he expresses
within an appropriate relational framework although it is inspired by the older
technique of possibility mappings first proposed in [15]. In place of a simple
retrieve relation between abstract and concrete states, his rule employs a pow-
ersimulation, i.e. a relation from sets of abstract states to individual concrete
states. There is in fact a close correspondence between Derrick’s method and
ours: specifically, his powersimulation when inverted should yield the power co-
predicate of our cosimulation as embodied by our representation operation.

7.1 Derrick’s Example Translated into B

The single complete rule in [4] is illustrated there on an example refinement which
is neither a forward nor backward one, and therefore unamenable to a direct
single-step proof using alone either the forward refinement rules or backward
refinement rules in [16], although of course since these rules are jointly complete
it would be possible to prove this as indeed any valid refinement by using them
in combination via an intermediate refinement.

We applied our method to the same example, after first translating this from
Z to B to obtain the following pair of machines:

MACHINE Amach

VARIABLES xx

INVARIANT xx ∈ 0..5

INITIALISATION xx := 0

OPERATIONS

one =̂ PRE xx = 0 ∨ xx = 1
THEN xx = 0 =⇒ xx := 1 u xx = 1 =⇒ xx := 0
END ;

two =̂ PRE xx = 0 THEN xx := 2 u xx := 3 END ;

three =̂ PRE xx = 2 ∨ xx = 3
THEN xx = 2 =⇒ xx := 4 u xx = 3 =⇒ xx := 5
END

END

11



MACHINE Cmach
VARIABLES yy
INVARIANT yy ∈ {0, 2, 4, 5}
INITIALISATION yy := 0
OPERATIONS

one =̂ PRE cc = 0 THEN yy := 0 END ;
two =̂ PRE yy = 0 THEN yy := 2 END ;
three =̂ PRE yy = 2 THEN yy := 4 u yy := 5 END

END

7.2 Verification of Derrick’s Refinement Example

Our experience of verifying Derrick’s refinement example was interesting. First,
we constructed the following representation operation rpn corresponding directly
to the powersimulation given by Derrick in [4] for the same example:

rpn =̂ (yy = 0 | (xx := 0 u xx := 1) t xx := 0 t xx := 1)
t (yy = 4 ∨ yy = 5 | (xx := 4 u xx := 5))

We were then unexpectedly perplexed to find that this rpn was ineffective for
proving Amach v Cmach by our method. On the other hand, we found were
able to verify this refinement by means of a different representation operation
rpr, where

rpr =̂ (yy = 0 | (xx := 0 t xx := 1))
t (yy = 2 | (xx := 2 u xx := 3)
t (yy = 4 ∨ yy = 5 | (xx := 4 u xx := 5))

We omit here the proofs involved, which are similar to those already given for
Schrődinger’s cat. We note that our representation operation rpr corresponds to
the powersimulation r , defined in Z terms by

r : P Astate ↔ Cstate

r = {{〈xx ; 0〉} 7→ 〈yy ; 0〉,
{〈xx ; 1〉} 7→ 〈yy ; 0〉,
{〈xx ; 2〉, 〈xx ; 3〉} 7→ 〈yy ; 2〉,
{〈xx ; 4〉, 〈xx ; 5〉} 7→ 〈yy ; 4〉,
{〈xx ; 4〉, 〈xx ; 5〉} 7→ 〈yy ; 5〉}

rather than the r defined in [4]. We subsequently alerted [4]’s author to this
discrepancy between his and our powersimulations. He obliged us by undertaking
his own investigation which resulted in his diagnosing a printer’s error in [4];
moreover, he confirmed that the correct powersimulation for the example is
indeed our r above rather than that given in [4]. We take this as a significant
vindication of our single refinement method for B: not only has it proved effective
in independently verifying this refinement example; it also directly led us to
detect a previously unsuspected mistake in the original powersimulation given
in [4] for verifying the same example by Derrick’s rule.

12



8 Related Work and Conclusions

In [5] model-checking is employed to generate retrieve relations for both forward
and backward refinements. Presumably this technique could be extended to gen-
erate powersimulations for arbitrary refinements, although this is not discussed
in [5]. On the other hand [14] does describe automatic verification of arbitrary
refinements in B using the ProB model checker [13]. That technique uses ProB
to construct a relation from concrete states to sets of abstract states which is
in effect the power co-predicate of a cosimulation for the refinement, so this
complements our refinement proof method rather well.

Our single refinement method is applicable to classical B and Event-B alike.
In particular, Event-B’s characteristic introduction of new events during refine-
ment raises no particular issues for the new method. The key to our method is the
construction of an effective monotonic representation operation. Our experience
indicates that the flexibility afforded by the extended substitution language’s
syntax to arbitrarily interleave demonic and angelic choices greatly assists the
developer in such an exercise.

The example refinements on which we have demonstrated our single refine-
ment method are necessarily rather trivial, although they do nevertheless illus-
trate all the principles of the method so we hope that they may have served
sufficiently to demonstrate that our method is amenable to the sort of mech-
anisation provided by both the classical B and Event-B development support
environments. Indeed we hope to explore the possible provision of a suitable
plug-in for the Rodin platform for the generation of the proof obligations of our
method. Two extensions to core B are needed by our method, namely support
for extended substitutions and also for arbitrary tuples. Fortunately, we believe
neither of these should pose any particular difficulty for support tool implemen-
tors.

Acknowledgements

We are grateful for the points raised by the anonymous reviewers, which we have
endeavoured to address in this final version of the paper.

References

1. J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University
Press, 1996.

2. R.-J. Back and J. von Wright. Refinement Calculus: A Systematic Introduction.
Springer-Verlag New York, 1998.

3. R. Banach and S. Fraser. Retrenchment and the B-Toolkit. In H. Treharne,
S. King, M.C. Henson, and S. Schneider, editors, ZB2005: Formal Specification
and Development in Z and B, number 3455 in Lecture Notes in Computer Science,
pages 203–221. Springer, 2005.

4. J. Derrick. A single complete refinement rule for Z. Journal of Logic and Compu-
tation, 10(5):663–675, 2000.

13



5. J. Derrick and Smith G. Using model checking to automatically find retrieve
relations. In International Refinement Workshop (Refine 2007), number 201 in
Electronic Notes in Theoretical Computer Science, pages 155–175. Elsevier, 2008.

6. E.W. Dijkstra. A Discipline of Programming. Prentice-Hall International, 1976.
7. E.W. Dijkstra and C.S. Scholten. Predicate Calculus and Program Semantics.

Springer Berlin, 1990.
8. S.E. Dunne. A theory of generalised substitutions. In D. Bert, J.P. Bowen, M.C.

Henson, and K. Robinson, editors, ZB2002: Formal Specification and Development
in Z and B, number 2272 in Lecture Notes in Computer Science, pages 270–290.
Springer-Verlag, 2002.

9. S.E. Dunne. Introducing backward refinement into B. In D. Bert, J.P. Bowen,
S. King, and M. Walden, editors, ZB2003: Formal Specification and Development
in Z and B: Third International Conference of B and Z Users, number 2651 in
Lecture Notes in Computer Science, pages 178–196. Springer-Verlag, 2003.

10. S.E. Dunne. Chorus Angelorum. In Jacques Julliand and Olga Kouchnarenko, ed-
itors, B2007: Formal Specification and Development in B, number 4355 in Lecture
Notes in Computer Science, pages 19–33. Springer, 2007.

11. P.H.B. Gardiner and Carroll Morgan. A single complete rule for data refinement.
Formal Aspects of Computing, 5:367–382, 1993.

12. C.B. Jones. Systematic Software Development Using VDM (2nd edn). Prentice-
Hall, 1990.

13. M. Leuschel and M.J. Butler. ProB: A model checker for B. In K. Araki, S. Gnesi,
and D. Mandrioli, editors, FME 2003: Formal Methods, number 2805 in Lecture
Notes in Computer Science, pages 855–874. Springer-Verlag, 2003.

14. M. Leuschel and M.J. Butler. Automatic refinement checking for B. In K. Lau
and R Banach, editors, Formal Methods and Software Engineering: ICFEM 2005,
number 3785 in Lecture Notes in Computer Science, pages 345–359. Springer-
Verlag, 2005.

15. N.A. Lynch. Multivalued possibility mappings. In J.W. de Bakker, W.-P.
de Roever, and G. Rozenberg, editors, Stepwise Refinement of Distributed Systems,
number 430 in Lecture Notes in Computer Science, pages 519–543. Springer-Verlag,
1990.

16. J. Woodcock and J. Davies. Using Z: Specification, Refinement and Proof. Prentice
Hall, 1996.

14


