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Introduction 

It won´t be long before we have mutant alleles for every gene in the mouse genome. It also 

won´t be long before we can sequence an entire genome in a few hours and for less than 

1000 $. But there is much more to come. And you will be surprised about the speed with 

which these developments will take place. Imagine you can follow the fate of every single 

cell during the development of a mouse from fertilization to birth and even beyond. 

Imagine you can watch the expression of a single molecule of any protein or the total 

expression of all proteins in a single cell continuously over time. Imagine you can titrate 

the expression of single genes in specific cell populations at will. 

 

High throughput technologies have become the driving force in the analysis of biological 

systems. Biologists are increasingly taking advantage of automatization, miniaturization 

and computerization. In this sense biology follows the development of computer and 

information technology: smaller size, higher speed and capacity, lower cost. However we 

should remember that the age of computer and information technology was preceded by a 

pre-exponential phase during which important theoretical frameworks and concepts were 

developed: Alan Turing (1936)) and John von Neumann (1945) provided the mathematical 

basis for an automatic computing machine and a corresponding “computer architecture”. 

To Claude E. Shannon (Weaver, W. & Shannon, C.E. 1949) and Norbert Wiener (1948)we 

owe the mathematical theory of information and cybernetics. The convergence of 

electronic and mechanical engineering then triggered the development and application of 

systems control theory, a key requirement for the modelling and simulation of the 

dynamics of technical systems.  

 

A major challenge in biology is to model, simulate and to eventually predict the behaviour 

of complex biological systems. The identification of the individual components that 

constitute a biological system, i.e. through the genome wide transcriptome-, proteome- and 

metabolome-analysis, will be required but will not be sufficient to achieve this goal. We 

will also need detailed information about the “network architecture” and the dynamics of 
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biological systems. This is where systems biology comes into place (Kitano 2002, 

Kirschner 2005, Palson 2006, Alon 2007).  

 

From perturbation to model building: an iterative cycle in systems biology 

Biological systems are emerging, adaptive systems, highly complex and often nonlinear. 

Their behaviour cannot be explained solely on the basis of their individual parts. Deep 

insight into the network structure, function and dynamics of biological systems can only be 

obtained through their systematic perturbation, followed by a detailed characterization of 

the molecular, cellular and phenotypic changes that follow these perturbations. Based on 

the perturbation consequences observed, a model can then be established or existing 

models modified or further developed, which grasp the important features of the underlying 

mechanisms (Sauro & Kholodenko 2004).  

 

Mouse genetics has been an extremely powerful perturbation method for nearly a century. 

Loss of function and gain of function mouse mutants are able to reveal causal relationships 

between specific genes and specific phenotypes. An impressive mouse genetics toolbox is 

now available that allows us to perturb a wide range of biological systems. Methods such 

as the production of transgenic mice, gene targeting through homologous recombination in 

ES cells, phenotype or gene-driven mutagenesis strategies or RNAi-based knockdown are 

now used on a routine basis. Sequence diversity is also a form of natural perturbation. In 

combination with the analysis of gene expression and phenotype analysis a thorough 

comparison of the consequences of allelic variants can be very powerful. The main 

challenge will be the functional dissection of the combinatorial activity of small sequence 

changes, forming the core of “Complex Trait Analysis”.  

 

Perturbing biological systems through genetic changes is only one possibility to obtain 

information to dissect the structure and function of genetic networks. Equally important 

and increasingly appreciated is the use of small molecules, which can act as agonists or 

antagonists of biological processes (Schreiber 2005). Whereas a while ago, combinatorial 

chemistry was largely a domain of pharmaceutical drug development, the power of small 

molecules as a means to study the function of specific proteins or pathways is increasingly 

appreciated. There are specific strengths and weaknesses to the use of small molecules. 

One of the most important aspects is specificity. Very rarely does a small molecule bind to 

one and only one target and in many cases the precise number and nature of targets is 
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unknown. Small molecules are more adaptable to the titration of dose-responses or pulse-

chase studies. Similar to searching for modifiers in a genetic screen, chemical biologists 

now are starting to carry out combinatorial screens to unravel redundancies or pathway 

interactions that are not revealed by single small molecule screens. In fact, one may be able 

to stay below the “toxic window” of a specific small molecule by combining two or more 

of them each of which acting on different targets within the same pathway. Sooner or later 

we will see a convergence between the fields of small molecules and small animals, i.e. in 

the area of non-invasive imaging (Sako 2006). Molecular markers will become available 

that allow us to follow perturbations at the molecular and cellular level and in real time. 

 

A need for integrative network analysis 

Analyzing the individual components of a network is not sufficient. We need to understand 

how these components interact with each other and which are in direct or indirect contact. 

We must know how the components dynamically interact, what compensatory mechanisms 

are triggered, when components are defective or are inactivated. An understanding of a 

system therefore requires knowledge about the systems structure and architecture (Papin et 

al. 2005). Once we have sufficient information about the structure of a system we can begin 

to study systems dynamics. This will then help us to understand the control measures that 

are responsible for the overall behaviour of the system or its modules under external 

perturbations (Carpenter & Sabatini 2004, Barabasi & Zoltva 2004, Alon 2007). These 

cannot be automatically inferred from the parts list of a system. Biological information is 

passed through a number of highly integrated networks, including transcriptione, proteome 

or metabolome networks (Khammash & El-Samad 2004, Saez-Rodriguez et al. 2004). 

Methods to reconstruct or analyze biological networks have become an active field of 

research (Oda et al. 2005, Oda & Kitano 2006). Since Leonard Euler and Paul Erdöz the 

field of network analysis and graph theory has developed tremendously. Network analysis 

is also the basis of understanding disease pathogenesis and disease traits.  

 

Modules: Making sense out of black boxes 

A common theme in advanced technologies and engineering is to divide systems into 

modules that can be treated individually or in terms of connecting different modules as part 

of a higher order system. Since the discovery of the double helix structure of DNA, a 

reductionist approach to analyse biological systems has proved to be extremely successful. 

However we feel, that we are reaching a limit as to how much we can learn about complex 
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biological systems by looking with a still increasing resolution at individual components of 

a system. No doubt, at the end, we would like to understand biological phenomena on the 

basis of atomic resolution. On the other hand, the rise of systems biology reflects our 

increased appreciation and desire of looking at all the scales of biology, including the 

molecular, cellular, organismic and population based levels.  

 

Partitioning biological systems into modules helps to achieve a more integrated picture. In 

order to understand causal relations among individual parts and modules, we need 

information about the directionality of flow of information or material between the edges 

within a network (Natarajan et al. 2006). We already know that systems behave differently 

dependent on whether we deal with single or a few molecules or millions of molecules. 

Stochastic and statistical approaches, i.e. Bayesian network reconstruction algorithms, need 

to be applied to deal with the uncertainties and probabilities of biological systems 

(Needham et al. 2006). The role of noise in biological systems is just being unravelled. 

Some of the most important contributions are currently made by physicists who are able to 

apply the repertoire of statistical physics to biological problems (Rao et al. 2002, Samoilov, 

M. et al. 2005, Sprinzak & Elowitz 2005, Kussell et al. 2005, Alon 2007).  

 

Given their complexity a remarkable feature of biological systems is their robustness 

towards environmental perturbations (Kitano 2004, Kitano & Oda 2006, Kurata et al. 

2006). How do biological systems preserve their function despite environmental conditions 

that can differ over magnitudes of scale leading to tremendous fluctuations in metabolic 

components or ligands? We do not yet understand the underlying mechanisms that are 

responsible for this robustness. Genetic redundancy, i.e. the presence of multigene families 

that can at least partially substitute for each other, are apparently one way to increase the 

robustness of a system. Similarly a redundancy of pathways could contribute to the 

potential of a cell to maintain the robustness of a biological system. On the other hand, 

there might be a price that has to be paid, i.e. under different environmental conditions, 

leading to a trade off of robustness vs. fragility dependent on the external factors that act on 

the system (Kurata et al. 2006). Robustness or fragility of biological systems can only be 

understood if we obtain insight into the structure and the dynamics of elements responsible 

for feedback control, an essential element in almost all complex systems (Schmidt & 

Jacobsen 2004). 
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Systems biology and drug development 

Robustness and fragility are also of high interest to understand disease pathogenesis or the 

susceptibility or resistance towards the development of diseases (Butcher et al. 2004, 

Kitano 2004, Fishman & Porter 2005, Wagner 2005). What are the factors that drive a 

physiological system towards its disease state? How can we interfere with an unbalanced 

situation through preventive or therapeutic measures and maybe push back a disease state 

towards a more buffered state? What are the critical components which could be selected as 

a drug target? We are just at the beginning of identifying specific molecular components as 

indicators of the state of a system and more important as predictors for the future 

development of the system, i.e. as an early marker for disease development (Lage et al. 

2007). These “biomarkers” do not necessarily need to be the same as those that qualify as 

drug targets. One of the frustrating issues in the drug development pipeline is the lack of 

sufficient preclinical predictability for safety and efficacy. Although many of the animal 

models are able to predict side effects of drug candidates, in many cases we miss adverse 

reactions and identify them at later stages of clinical development. By combining network 

analysis, statistic and high-throughput genetic and genomic approaches in order to identify 

new relevant biomarkers, systems biology bears great potential to improve the 

predictability of our preclinical in vitro and vivo models (Hood et al. 2004). 

 

Look at the similarities and treasure the differences 

Maybe we have focussed so far too much on the similarities of model organisms instead of 

also trying to understand the differences. Maybe we should increase our efforts in 

comparative systems biology. We might have to take a much closer look at the differences 

between mice and humans in terms of their relevance for drug development and try to 

understand the mechanisms of species-specific absorption, metabolism, metabolism and 

excretion (ADME). Some of the species differences can be overcome by i.e. introducing 

human genes into the mouse genome or by xenografting human stem cells into mice 

(Schultz et al.2007). These efforts in “humanizing mice” are still at the stage of “trial and 

error”. We urgently need a “Comparative Systems Analysis” that could guide us in 

selecting the most relevant genes or cell types that are the cause of differences in drug 

responses or disease pathogenesis and that should be prioritized in our efforts to improve 

the predictability of mice as a model system for human disease.  
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Biological systems are complex adaptive systems that emerge during the development from 

a fertilized egg to the development of an adult organism. During evolution changes in the 

environment leads to different constraints and fixation of certain degrees of freedom in 

genome structure and function. Components of genome networks can only be added or 

changed when the workability and functionality of the biological system is maintained, at 

least to a certain degree (Ottino 2004, Weitz et al. 2007).  

 

Comparative systems analysis needs appropriate databases (Albeck et al. 2006, Kersey & 

Apweiler 2006). These are not yet sufficiently developed. The mouse comparative ontology 

database is useful but does not provide information about the components, interactions and 

dynamics of physiological systems. 

(http://www.informatics.jax.org/menus/homology_menu.shtml). 

We need all the information available, i.e. a user friendly easily retrievable information 

system on the level of transcripts in a given cell, the dynamic response of mouse vs. human 

cells to small molecules, the levels of redundancy in the two species, species-specific 

genes, splicing patterns, posttranslational modification etc.  

 

A need for modelling and simulation 

Networks of biological systems are so complex that they cannot be understood any more by 

intuition. Some systems properties are even counterintuitive! It is the iteration of 

experiment and simulation that will characterize future systems biology. We need to 

describe biological systems mathematically and treat them in an integrated and quantitative 

manner to come up with predictions about their behaviour (Gershenfeld 2006, Szallasi et al. 

2006). So far biologists often formulate their conceptional picture of a biological system as 

a flowchart-type model. These are more or less static and do not encompass information 

about the behaviour of a system over time, i.e. after a specific environmental perturbation. 

Model building has often been done on an intuitive basis by biologists. Biologists are often 

not aware that there already exists a rich literature and toolbox in systems control theory 

(Csete & Doyle 2002, Tyson 2003, Brent 2004). We need to get used to applying 

systematic perturbations, observing the reaction of the system to these perturbations, 

developing a first approximation model, testing this model by further perturbation studies 

(Locke et al. 2005, Aldridge et al. 2006, Janes & Yaffe 2006). Biologists are fairly well 

trained in hypothesis testing, but not in hypothesis generation. This is where systems 

biology has its greatest potential. Description will converge with prediction. 

http://www.informatics.jax.org/menus/homology_menu.shtml
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Don´t be afraid of mathematics 

Systems biology often tries to apply formal mathematical descriptions based on time series 

analysis of biological response. So far the sheer amount and the quality of data constituted 

significant roadblocks to tackle the dynamics of biological systems. Technological 

advances help us to overcome these problems. A more severe problem, at least for the 

current generation of biologists, is the limited training in mathematics. The first two years 

of an engineering training provides a mathematical toolbox necessary for a mathematical 

description of technical systems and is essential for modelling or simulating the behaviour 

of complex systems. It will neither be possible nor useful to turn every biologist into a 

mathematician. However we need to improve the capability for a dialogue between 

biologists and mathematicians, physicists and engineers. The basics of linear algebra, 

vector analysis and graph theory have to enter the curriculum of a biologists training 

(Wingreen & Botstein 2006).  

 

Unfortunately formal tools for model production do not yet exist. In addition model 

building is not easy and requires a very good understanding of the biological system under 

study. A question often raised is where to start: bottom up, top down or a combination of 

both. An interesting suggestion is to start “middle out” where the modelling begins at that 

level at which there are rich biological data and then reach up and down to other levels. 

(Noble 2002). A major difficulty is also the transfer of a model from one application to 

another. We need to develop standardization frameworks, so that even novices in 

computational biology or systems biology are able to build, access and work with existing 

models (Wall et al. 2004).  

 

Complex Trait analysis: The next frontier in systems biology 

For more than 100 years mouse genetics has relied on the analysis of single monogenic 

mutants. The methods to identify or produce mutants has changed considerably over the 

years. Soon we will have in our catalogues and freezers mouse mutants for every gene in 

the genome (Collins et al. 2007). Extensive collections will also be available as a result of 

phenotype driven mutagenesis screens (Balling 2001). Whereas the analysis of these 

mutants might keep us busy for many years to come, the next frontier of mouse genetics is 

already on the horizon: systems genetics. We all know that the expressivity and penetrance 

of mouse mutant phenotypes can vary tremendously dependent on the genetic background. 

Modifier screens can be used to identify some of the genetic loci responsible for the strong 
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influence of genetic background on physiological and pathophysiological processes. 

Sequencing and as a cheaper substitute SNP-typing have provided us with a detailed 

picture of the genetic diversity of our main inbred mouse strains. Most of them are derived 

from a very limited pool of parental strains and strong selection was applied to obtain the 

handsome, highly adapted common lab strains of mice that we now use in our experiments.  

 

Recombinant inbred strains and other reference panels of inbred strains are powerful tools 

to carry out a genome wide dissection of complex biological traits that are the result of 

multiple, quantitative and often highly interacting genes (Churchill et al. 2004, Flint et al. 

2005, Hill et al. 2006, Peters eta l. 2007). The series of BXD strains has been a paradigm 

for the success of analyzing complex traits. Unfortunately the use of RI-strains does not fall 

under the category “quick and easy” experiments but requires a fair amount of logistics, 

infrastructure, an appreciation for the power of genetics and time. The major bottleneck 

however was the “power of mapping resolution” that the analysis of 30 to 80 strains 

provides. The “Complex Trait Consortium” has tackled precisely this problem (Churchill et 

al. 2004). 

 

The goal is to produce approximately 1000 recombinant inbred strains (The Collaborative 

Cross) within the next 5 years and make them available as an open source to the scientific 

community. Importantly the parental strains chosen also include three strains that we would 

classify as “inbred wild mice”, i.e PWK/PhJ, WSB/EiJ and CAST/EiJ. The inclusion of 

these genetically highly diverse strains adds about 75 % additional sequence diversity. The 

availability of this large panel of diverse and well structured strains will allow experiments 

where mice with an identical genotype can be produced in large numbers and compared to 

an equally large number of mice with a wide range of different genetic and even 

environmental backgrounds. Sequencing of the parental strains and a community based 

complementary and additive phenotyping will eventually produce a resource that will help 

us to solve questions of gene function, epistatic genetic interactions, and genome-

environment interactions that we can currently only dream about.  

 

There are other approaches, i.e. the development of consomic mouse strains, that 

essentially target the same questions (Peters et al. 2007). It will be important to not look at 

these approaches as exclusive or competitive, but as a new toolbox of quantitative trait 

analysis where each one has specific pro´s and con´s. New phenotyping methods including 
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gene expression arrays or phenotyping based on non-invasive imaging will have to be 

integrated into the described complex trait studies. Microarrays are a new micro-

phenotyping platform that allows us to look at the expression of thousands and hundreds of 

thousands of different genes (eQTLs). This shift to micro-phenotypes requires new 

statistical tools because of multiple testing issues but also a much higher computational 

capacity then ever before. To quote Denis Noble: “Biology is set to become highly 

quantitative in the 21st century. It will become a computer-intensive discipline” (Noble 

2002). 

 

For many years mouse genetics has been the driving force as a hypothesis generator for 

functional genomics. The production of mouse models, i.e. transgenic mice, knockout mice 

or mouse mutants identified from phenotype driven screens are great tools to identify 

candidates for human disease genes. The construction of mouse inbred strain panels 

derived from genetically diverse parental populations provides us with valuable model 

populations. At the same time, the power of human association studies has reached a point 

where some people even think that it heralds the end of mouse genetics. I think the opposite 

is true. The availability of mouse reference populations will allow us to ask question that 

complement those addressed by human association studies. More importantly, we can 

quickly validate hypothesis derived from human population studies by not only 

constructing equivalent mouse populations but also by probing the function of individual 

genes through the analysis of gene targeting or specific point mutation alleles. The 

argument that we can find such mutations also in human populations does not take into 

account that in mice we are not only able to study the effect of genetic variation, but also to 

“titrate the environment” much better than it will ever be possible for humans. 

 

At this point of time, mouse geneticists and human geneticists have not connected well 

enough to exploit the power of their respective toolboxes. To quote Rob Williamson: 

“There is still an impedance mismatch between human association and reductionist mouse 

studies”. Maybe this special issue of Mammalian Genome can contribute to a more better 

cooperation between mouse and human geneticists. It will pay off for all of us. 
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