Identification and biological applications of rhegnylogically-organized cell penetrating peptides.
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Metadata
Show full item recordAbstract
Introduction: Many different cell penetrating peptides (CPPs) have been utilized as vectors to affect the highly efficient intracellular delivery of bioactive moieties. A majority of such studies employ sychnologically-organized tandem combinations of a cargo (message) and a CPP (address). To date, bioactive cargoes have included peptides, proteins and a range of oligonucleotides attached either by direct chemical conjugation or as a component of a larger macromolecular complex. Moreover, a majority of CPPs, including the commonly used sequences Tat and penetratin, are designed to be both biologically and toxicologically inert. More recently, a QSAR-based algorithm has been developed to predict cryptic polycationic CPP motifs within the primary sequences of proteins. As described here, this novel technology has enabled the study of rhegnylogic CPPs in which multiple pharmacophores for cellular penetration and desirable biological activities are discontinuously organized within the primary sequence of single peptide. This organization differs from the more commonly utilized sychnologic strategy which joins functionally discrete and continous address and messages together in a tandem construct.Citation
n: Wilce, J. (Ed.), Proceedings of the 4th International Peptide Symposium, in conjunction with the 7th Australian Peptide Conference and the 2nd Asia-Pacific International Peptide Symposium, 21-25 October 2007, Cairns, Great Barrier Reef, Queensland, Australia.Publisher
Australian Peptide AssociationCollections