• Login
    View Item 
    •   Open Repository Home
    • University
    • Theses and Dissertations
    • Dissertations
    • View Item
    •   Open Repository Home
    • University
    • Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Open RepositoryCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjectsProfilesView

    My Account

    LoginRegister

    Local Links

    AboutOpen RepositoryAtmire

    Statistics

    Display statistics

    Aggregation in temporal databases

    Aggregation in temporal databases

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Aggregation in temporal databa ...
    Size:
    4.635Mb
    Format:
    PDF
    Download
    Average rating
     
       votes
    Cast your vote
    You can rate an item by clicking the amount of stars they wish to award to this item. When enough users have cast their vote on this item, the average rating will also be shown.
    Star rating
     
    Your vote was cast
    Thank you for your feedback
    Author
    Kline, Rodger Nickels
    Kline, Rodger Nickels
    Keyword
    Computer Science.
    Computer Science.
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/2384/295012
    Abstract
    Temporal database systems extend relational database systems to support time-varying information. One important such extension is support for time-varying aggregate functions, such as a time-varying average. Our research will show that temporal aggregates may be specified in a semantically well defined manner yet be efficiently implemented as simple extensions to relational databases. We introduce a taxonomy of temporal aggregation, based on a study of all major temporal query languages containing aggregates. The taxonomy categorizes the expressiveness and functionality of temporal aggregation. Based on this taxonomy, we introduce extensions to TSQL2 for temporal aggregation. The proposed language constructs allow one to express the variety of features identified in the taxonomy. We briefly discuss the semantics for the temporal aggregate language extension. We introduce an operator for evaluating temporal aggregates in a temporal relational algebra; the operator was designed to implement the tuple semantics. We show that theoretically, the most efficient evaluation of a temporal aggregate over a relation with n unique timestamps requires Θ(n log n) time, with O(n log n) space in any decision tree algorithm. We provide an example algorithm meeting these requirements, utilizing a 2-3 tree. Based on the requirements for evaluation of the algebraic operator, we introduce a series of main memory algorithms for evaluating temporal aggregates, including the aggregation tree, k-ordered aggregation tree, the chalkboard algorithm, the linked-list algorithm, and show how to perform aggregation using a 2-3 tree. The algorithms exhibit different applicability depending on aspects of the input relation, including sort order, percentage of long-lived tuples, and number of tuples. We also provide an algorithm which executes using only a user-limited amount of memory, the paging aggregation tree. We characterize the effectiveness of these algorithms based on an empirical study of their performance.
    Temporal database systems extend relational database systems to support time-varying information. One important such extension is support for time-varying aggregate functions, such as a time-varying average. Our research will show that temporal aggregates may be specified in a semantically well defined manner yet be efficiently implemented as simple extensions to relational databases. We introduce a taxonomy of temporal aggregation, based on a study of all major temporal query languages containing aggregates. The taxonomy categorizes the expressiveness and functionality of temporal aggregation. Based on this taxonomy, we introduce extensions to TSQL2 for temporal aggregation. The proposed language constructs allow one to express the variety of features identified in the taxonomy. We briefly discuss the semantics for the temporal aggregate language extension. We introduce an operator for evaluating temporal aggregates in a temporal relational algebra; the operator was designed to implement the tuple semantics. We show that theoretically, the most efficient evaluation of a temporal aggregate over a relation with n unique timestamps requires Θ(n log n) time, with O(n log n) space in any decision tree algorithm. We provide an example algorithm meeting these requirements, utilizing a 2-3 tree. Based on the requirements for evaluation of the algebraic operator, we introduce a series of main memory algorithms for evaluating temporal aggregates, including the aggregation tree, k-ordered aggregation tree, the chalkboard algorithm, the linked-list algorithm, and show how to perform aggregation using a 2-3 tree. The algorithms exhibit different applicability depending on aspects of the input relation, including sort order, percentage of long-lived tuples, and number of tuples. We also provide an algorithm which executes using only a user-limited amount of memory, the paging aggregation tree. We characterize the effectiveness of these algorithms based on an empirical study of their performance.
    Publisher
    The University of Arizona.; The University of Arizona.
    Collections
    Dissertations

    entitlement

     

    DSpace software (copyright © 2002 - 2025)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.